System handbook Option PME central unit

SINEAX® AM, SINEAX® DM5000, CENTRAX® CU, LINAX® PQ

Operating instructions option PME central unit (2023-08)

GMC INSTRUMENTS

Camille Bauer Metrawatt AG Aargauerstrasse 7 CH-5610 Wohlen / Switzerland Phone: +41 56 618 21 11 Telefax: +41 56 618 35 35 E-Mail: info@cbmag.com

Legal information

Warning notices

In this document warning notices are used, which you have to observe to ensure personal safety and to prevent damage to property. Depending on the degree of danger the following symbols are used:

If the warning notice is not followed death or severe personal injury **will** result.

If the warning notice is not followed damage to property or severe personal injury **may** result.

If the warning notice is not followed the device **may** be damaged or **may** not fulfill the expected functionality.

Qualified personnel

The product described in this document may be handled by personnel only, which is qualified for the respective task. Qualified personnel have the training and experience to identify risks and potential hazards when working with the product. Qualified personnel are also able to understand and follow the given safety and warning notices.

Intended use

The product described in this document may be used only for the application specified. The maximum electrical supply data and ambient conditions specified in the technical data section must be adhered. For the perfect and safe operation of the device proper transport and storage as well as professional assembly, installation, handling and maintenance are required.

Disclaimer of liability

The content of this document has been reviewed to ensure correctness. Nevertheless, it may contain errors or inconsistencies and we cannot guarantee completeness and correctness. This is especially true for different language versions of this document. This document is regularly reviewed and updated. Necessary corrections will be included in subsequent version and are available via our webpage https://www.camillebauer.com.

Feedback

If you detect errors in this document or if there is necessary information missing, please inform us via e-mail to: customer-support@camillebauer.com

<u>Contents</u>

Le	əgal i	information	.2
1.	Intr	roduction	.4
	1.1	Purpose of this document	.4
	1.2	Scope of supply	.4
	1.3	Further documents	.4
2.	Saf	fety notes	.5
3.	Dev	vice overview	.5
4.	Co	onnection of radio modules	.7
	4.1		
	4.2	PME radio sensor CTR75-1000A	.7
5.	Co	ommissioning	.9
	5.1	Linking the PME radio modules to the base unit	.9
	5.	.1.1 Power supply	.9
	5.	.1.2 Add a radio module to the base unit1	0
	5.	.1.3 Modifying module settings1	2
	5.	.1.4 State overview of the modules1	2
	5.2	Installation check1	3
6.	Ор	perating the device1	5
	6.1	Operating elements1	5
	6.2	Selecting the information to display1	5
	6.3	Configuration1	6
	6.	.3.1 Local configuration at the device1	6
	6.	.3.2 Configuration via web browser1	6
	6.4	Data recordings of the PME measurement systems1	6
	6.5	Measurement information in file format1	
	6.	.5.1 Predefined tasks1	9
	6.	.5.2 Creating periodic file data1	9
	6.	.5.3 Accessing file information via webpage2	21
		.5.4 Periodical sending to a SFTP Server	
7.	Ser	vrvice, maintenance and disposal2	21
	7.1		
	7.2	Disposal	
8.	Тес	chnical data	22
A		z	
~	A1	Basic measurements	
	A2	Harmonic analysis	
	AZ A3	Mean-values with fluctuation range	
	A3 A4	Meters	
в		splay matrix PME measurement systems	
c		sping a camera	
D		idio compliance statement	
_			
			-

1. Introduction

1.1 Purpose of this document

This document describes the option PME central unit and the associated radio modules to be used with the devices SINEAX[®] AM, SINEAX[®] DM5000, CENTRAX[®] CU or LINAX[®] PQ. It is intended to be used by:

- Installation personnel and commissioning engineers
- Service and maintenance personnel
- Planners

The functionality, installation and commissioning of the base unit are described in the device manual for the base unit, which can be found on the corresponding product page on our homepage <u>https://camillebauer.com</u> or can be downloaded from the device's website via the menu *Service* | *Device Information* | *Download manual*.

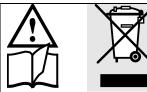
Scope

This handbook is valid for all hardware versions of the base units SINEAX[®] AM, SINEAX[®] DM5000, CENTRAX[®] CU or LINAX[®] PQ with option PME central unit.

Required knowledge

A general knowledge in the field of electrical engineering is required. For assembly and installation of the device knowledge of applicable national safety regulations and installation standard is required.

1.2 Scope of supply


- Measurement device with option PME central unit
- Radio module(s)
- Safety instructions radio module

1.3 Further documents

Further documents about this option are available via the respective product site of the base unit on our homepage <u>https://camillebauer.com/</u> in electronic form:

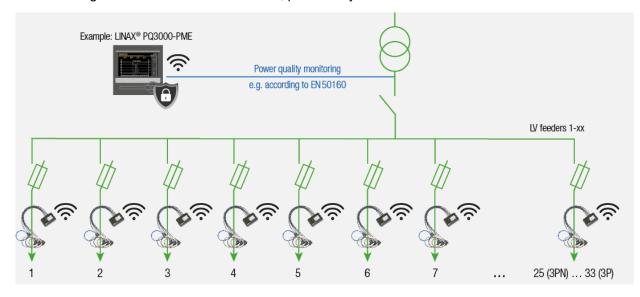
- Safety instructions radio module
- Data sheet option PME
- Modbus interface Option PME central unit

2. Safety notes

Device may only be disposed in a professional manner!

The installation and commissioning should only be carried out by trained personnel.

Check the following points before commissioning:


- that the maximum values for all the connections are not exceeded, see "Technical data" section,
- that the connection wires are not damaged, and that they are not live during wiring,
- that the power flow direction and the phase rotation are correct.

The instrument must be taken out of service if safe operation is no longer possible (e.g. visible damage). In this case, the instrument must be returned to the factory or to an authorized service dealer.

Unauthorized repair or alteration of the unit invalidates the warranty.

3. Device overview

The PME (Power-Monitor-Energy) option extends the functionality of the respective base unit into an actual energy center by collecting additional information about the distribution of the energy or the consumption of individual loads. This scalable solution makes the temporal power flows transparent and thus creates the basis for comprehensive energy management. It is typically used where the energy is distributed, for example in transformer stations or the supply of industrial plants or building complexes. Radio modules based on Rogowski coils are used as sensors, powered by batteries or via USB-C.

Up to 100 currents, divided between the PME radio modules for 3 or 4 conductors each, can be reliably recorded (AES-128 encryption) without any additional wiring effort. Once a second (default setting), not only the current values are determined from this, but also, thanks to synchronization with the voltage measurement of the base unit, comprehensive performance data and average loads, load profile data and energy meter values are derived, which are also stored as time series in the device.

Per PME measurement system (3- or 4-wire) additional measurement data are available:

MEASURED VALUE GROUP	APPLICATION
INSTANTANEOUS VALUES	
• I (per phase)	» Monitoring the conductors current load
P, Q, Q(H1), S (per phase and total)	» Reactive power compensation
 PF und cosφ (per phase and total) 	» Checking a given power factor
Temperature (in sensor junction box)	» Ambient temperature in the sensor area
Battery charge level	» Sensor management
HARMONICS	
THD I and Total Demand Distortion TDD I (per phase)	» Evaluation of the thermal load of equipment
Waveform (100/120 samples per cycle)	» Possible conclusions about the connected consumers
ENERGY BALANCE	
Energy meters active / reactive energy, import / export	» Preparation of (internal) energy bills
\bullet Mean values P, Q, Q(H1), S, PF and cos ϕ (per phase and total)	» Determination of energy consumption over time (load profile) for energy management or energy efficiency reviews
Mean values I, THD I and TDD I (per phase)	» Monitoring of average conductor load (heating)

4. Connection of radio modules

Ensure under all circumstances that the leads are free of potential when connecting them!

4.1 General safety notes

Please observe that the data on the type plate must be adhered to!

The national provisions have to be observed in the installation and material selection of electric lines, e.g. in Germany VDE 0100 "Erection of power installations with nominal voltages up to 1000 V"!

4.2 PME radio sensor CTR75-1000A

The option PME central unit in the base unit serves monitoring load flows in distribution systems or to consumers using up to 33 PME radio sensors. Synchronously with the voltage of the base unit, radio modules with 3 or 4 current channels each record all data required for the analysis of the energy flows and send them wirelessly to the base unit.

The radio modules require a <u>power supply</u> (batteries or USB-C).

During <u>commissioning</u>, each sensor module has to be linked to the base unit, to be able to assign the measured data uniquely to a measurement point. For that, information given on the nameplate of the modules must be available. It can therefore make sense to link the radio modules to the base unit before mounting them in the plant.

Commissioning of the radio modules is shown in chapter 5.1.

The junction box of the radio modules can be fixed directly on a cable using cable ties.

Do not mount the junction box on bare conductors!

Rogowski coils

The Rogowski coils of the radio modules are different in color and also marked:

- L1 Brown
- L2 Black
- L3 Gray
- N Blue (available for 4-wire versions only)

The Rogowski coils are placed directly around the respective conductors. The current direction, which is indicated by an arrow on the measuring head, must be observed.

5. Commissioning

The commissioning of the base unit is described in detail in the respective device handbook. You have to check if the connection data of the device match the data of the plant (see nameplate). If so, you can start to put the device into operation by switching on the power supply and the measurement inputs.

5.1 Linking the PME radio modules to the base unit

For an explicit assignment of the measurement data, the radio modules need to be linked individually to the base unit during commissioning. Doing so, you have to:

- 1. Supply power to the base unit, that the device website becomes available.
- 2. Provide power for the radio modules (batteries or USB-C) Hint: Linking is possible even if the module is not powered
- 3. Add the radio module to the base unit via QR-Code or manual entry of the Install Code
- 4. Assign the module to a PME measurement system
- 5. Assign a name to the measurement system
- 6. Parametrize the measurement system for the task (system, nominal current, amplification factor(s))
- 7. Assign the name of the measurement system to the radio module, if desired

Repeat steps 2 to 7 until all radio modules are linked to the base unit.

Hint: These steps will be executed immediately, without having the changed configuration to be stored in the device.

5.1.1 Power supply

The radio module CTR75-1000A needs to be powered. This is possible via either batteries or via USB-C (5 VDC).

Inserting / replacing batteries

A

The batteries must not be inserted / replaced during operation, the radio module must be removed from the system.

- 1. Loosen the screws (4x Torx Plus® 10IP) on the bottom of the housing
- 2. Remove the housing cover. ATTENTION: This cover muster later be reassembled on the same housing bottom.

Make sure that you are free of static electricity, so that the electronic is not damaged by static discharge.

3. Insert batteries in the battery holder or replace the existing batteries. Pay attention to the specified polarity. Never just replace individual batteries.

Only use Energizer Ultimate Lithium AA (1,5 V AA / FR6 / L91) batteries (available as accessories). If other batteries are used, operational reliability and service life could be reduced.

4. Electronics and housing cover (with the information given on the nameplate) form a unit. The same cover must be placed on the electronics again. Then fix the screws again (maximum torque 1.0 Nm).


Powering the module via USB-C (5 VDC)

As an alternative to battery power, the module can also be supplied via the side USB-C connector. If possible, use a supply with galvanic isolation.

As soon as the module is powered the LED flashes either red or green.

5.1.2 Add a radio module to the base unit

There are three pieces of information on the nameplate of the radio module, which are required for installation:

- ID: Identification number of the module, consisting of the module type (E6 or E7) and a unique sequential number (here A2C7B5D5)
- **Install Code**: 32-digit number that is required when linking the module to the base unit and ensures that communication is encrypted.
- **QR-Code**: Scannable version of the Install Code, for a faster installation procedure.

Symbol	Meaning
X	Device may only be disposed of in a professional manner
	Double insulation, device of protection class 2
CE	CE conformity mark. The device fulfills the requirements of the applicable EU directives.
\triangle	Caution! General hazard point. Read the operating instructions.
	Country specific radio equipment approvals

Adding a current module to a base unit is done via its website. Select *Add new sensor* in the settings menu of

a) the *PME current modules*. All modules reachable via radio and not assigned to a base unit will be displayed.
 Hint: Each module can be linked to only one base unit.

Serial number	Sensor type	RSSI
49991086	CTR75-1000A, 4CH	(î:

If the website is displayed on a device with camera (smart phone, tablet, notebook) or a webcam is connected

b) to the PC, select «Scan QR code», scan the code and proceed to step d).

Please note the information on using the camera in <u>appendix C</u>.

If there is no camera available, select

- «Enter connection details» and enter **ID and Install Code**
- c) OR
 - A device from the list of the not assigned devices and enter the **Install Code**

The new module must then be assigned to a measurement system. A name can be assigned to the measuring system, the type of connection can be defined and the nominal current can be set. If one or multiple of the sensors only measure a part of the respective total current,

 d) a part of the respective total current, this can be corrected with a scale factor, for example by a factor of 2 if only one of 2 parallel conductors is measured.

> A negative amplification factor reverses the current direction, e.g. if a sensor is incorrectly connected.

In the last step the name of the measurement system can also be

e) assigned to the module. This makes it easier to see the module usage within the sensor overview.

				4
Add new sensor				
ID		E6-49	9991086	
Installation code				
1603-09CB-FA35-6101-4832	2-1D3E-0046-I	E39D-6777		
	Ok	Back	Cance	el 📄
				3
Create system				
Name	Feeder_3			
System type		ad unbalanced, wi	h neutral current	~
Nominal primary current [A]		400		
		400		
Topology		Associated sens	ors Scale fa	actor
	1	Current Sensor [4999 🗸 🚺	
		Current Sensor [4999 🗸 🚺	
		Current Sensor	4999 🗸 🖌	
		Current Sensor I	4995 ~ 1	
		ourient ochoor j		
		Ok	Cance	el
Would v	ou like to	change the na	ames of the	
assigne	d sensors	?		
The senso	rs will have th	ie same name as i	their system	
		Yes	No	

5.1.3 Modifying module settings

The radio modules use default settings, e.g. a transmission power of 0 dBm (1 mW) or a polling interval of 1 s. If radio modules are mounted at a greater distance from the base unit, it may be necessary to increase the transmission power to ensure reliable radio reception. This then increases the power demand and can reduce the life cycle of the batteries. By extending the polling interval on the other hand the battery load can be reduced.

In order to change the settings of individual modules, a module can be selected in the configuration menu of the PME current modules. In this menu you can also:

Activate an LED flashing mode to identify the selected module

Remove modules

I < 1 > +5>> Results per page	25 🗸	C Add new sensor	
Name 🗢	Serial number 🔶	Sensor type 🔶	\$ ¢
AT4	49991086	CTR75-1000A, 4CH	Ш
System_3	4973E8DD	CTR75-1000A, 3CH	Ш
UT3	4973E8DE	CTR75-1000A, 3CH	Ш

In the sensor configuration the desired modifications can then be made:

	×
Sensor configuration	
Serial number	4973E8DD
Number of current inputs	3
Name	System_3
Radio transmission power	automatically adjuste 🗸
Polling interval	1s 🗸
Ok	Remove sensor Cancel

5.1.4 State overview of the modules

The state LED provides information about the current operating state of the respective module

Color	State	Meaning
-	dark	No power
red	Flashing every 5 s	Radio module with power , no measurement system assigned yet, not synchronized
green	Flashes every 1s or 10 s ¹⁾	Radio module in measurement mode , synchronized to base unit
orange	Flashes every 1s for 5s	Module identification via Web-GUI

¹⁾ 60 s after synchronization the flashing frequency changes to a 10 s cycle

Detailed information about the **state of the PME current modules** can be visualized via the service menu:

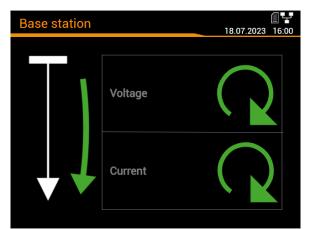
- Name, Serial number, Firmware version and type of the respective module
- Battery state of charge [%]
- Time since last successful communication
- RSSI reception level [dBm] of the last message, average level over the last 5 min in parentheses
- Link Quality: Percentage of successful queries in the last 5 minutes

Current module Radio spectrum								
Name	¢	Serial number 🝦	Firmware \Leftrightarrow version	Sensor type 🗘	İ	Last seen	RSSI (ø) 🔶	Link 🖨 Quality
AT4		49991086	1.0	CTR75-1000A, 4CH	a 36 %	0 s	-60 dBm (-62 dBm)	99%
System_3		4973E8DD	1.0	CTR75-1000A, 3CH	24 %	0 s	-61 dBm (-61 dBm)	100%
UT3		4973E8DE	1.0	CTR75-1000A, 3CH	a 35 %	0 s	-60 dBm (-62 dBm)	100%

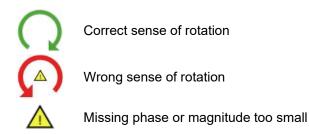
5.2 Installation check

The correct connection of the current and voltage inputs can be checked in two ways.

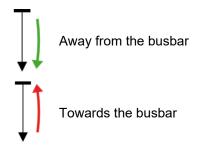
a) **Sense of rotation check**: Using the sequence of the current and voltage phasors the sense of rotation is determined and compared to the configured one.


Test requirement: Magnitude of all connected voltages at least 5% of nominal, magnitude of all connected currents at least 2% of nominal.

PQ5000 with option PME


systems

Menu Instantaneous values | PME measurement


In addition, the energy direction is evaluated and displayed, here in green: away from the busbar.

Sense of rotation

Energy direction


b) Installation check for devices with option PME: Phasor diagram and the visualization of sense of rotation and energy direction are displayed in the same image in the instantaneous values menu of the WEB interface. This information can be displayed not only for the basic device, but also for each individual PME measuring system. The system to be displayed can be selected in the top left dropdown menu.

Overview Imbalance Min/max Power triangle	Quadrants min	Power Qual	ty	_	_
([2] UT3 🗸	[2] UT3				
		и	L2	L3	SYS
	φ(U)	0 °	-120.03 °	119.99°	-
	ULL	398.86 V	399.00 V	399.09 V	-
	THD U	0.000 %	0.000 %	0.000 %	
	1	8.950 A	8.450 A	7.610 A	-
	φ(Ι)	18°	20.3 °	21 °	
	TDD I	0.500 %	0.600 %	0.500 %	
	Ρ	-	-	-	0.005 MW
	Q	-	-	-	0.002 Mvar
	s				0.006 MVA
100V/div 2A/div	PF		-		0.912
1000/div 2A/div	F	-	-	-	49.999 Hz
	θ	-	-	-	27.000 °C
	Ţļ		oltage urrent		Q Q

Instantaneous values display of a PME measurement system

Operating the device 6.

6.1 Operating elements

The operation of devices with display is performed by means of 6 keys:

- > 4 keys for navigation (\triangleleft , \blacktriangle , \bigtriangledown , \triangleright) and for the selection of values
- OK for selection or confirmation
- > ESC for menu display, terminate or cancel

The function of the operating keys changes in some measurement displays, during parameterization and in service functions. For the PQ3000 the valid functionality of the keys is then shown in a help bar.

6.2 Selecting the information to display

Main menu * Rasardaneous values * Instantaneous values * Energy * Harmonics * Phasor diagram * Waveform LINAX Esc (a) (b) (c) (c) (c)	Main menu Definition Image: Charge Image: Charge Image: Charge Image: C	CAMILE BAUER
PQ1000	PQ3000	PQ5000

PQ1000

For devices with display, information selection is performed via menu. Menu items may contain further sub-menus.

Displaying the menu

Press ESC. Each time the key is pressed a change to a higher menu level is performed, if present.

Displaying information

The menu item chosen using \triangle , ∇ can be selected using OK. Repeat the procedure in possible submenus until the required information is displayed.

Return to measurement display

After 2 min. without interaction the menu is automatically closed and the last active measurement display is shown.

6.3 Configuration

6.3.1 Local configuration at the device

The settings of the optional PME system cannot be viewed or changed locally.

6.3.2 Configuration via web browser

All settings for the optional PME system can be made via WEB-GUI.

Deviating from the normal functionality of the settings menu, changes to the PME current modules and PME measuring systems during the linking of the modules to the base unit are immediately applied to the current configuration and do not have to be saved explicitly.

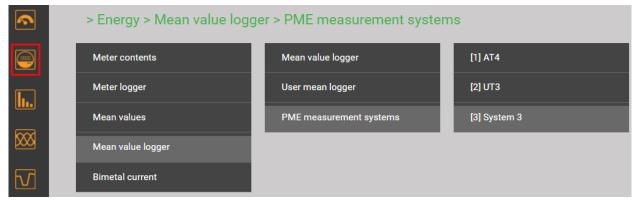
6.4 Data recordings of the PME measurement systems

For devices with the option PME central unit, the data logger additionally stores the time-series of mean values and meter readings of the PME measurement systems.

In addition, file-based information of the mean value timeseries may be periodically created using the <u>Data export scheduler</u>. This data may be saved internally and / or send securely to a SFTP server.

Group	Data type	Request	
<u>Periodic</u> <u>data</u>	 Time-series of mean-values: Standard quantities (5) User-specific quantities (12) Standard quantities of PME measurement systems (33) Periodic meter readings: Standard quantities (4) User-specific quantities (12) Standard quantities of PME measurement systems (4) 	Energy	 Mean value logger Meter logger

Configuration of the periodic data recordings


Via the settings menu the user can individually configure:

- The averaging interval of the standard mean-values of the PME measurement systems
- The reading interval of the standard meters of the PME measurement systems

The recording of all mean-values and meters is started automatically on device start. The recording of the mean-values is done when the appropriate averaging interval expires.

Displaying the chronology of the mean values

The chronology of the mean values of the PME measurement systems is available via the menu Energy:

Selection of the mean value logger of a PME measurement system

> Energy > Mean value logger > PME measurement systems > UT3 ▼ sys ut u2 u3

> Energy > Mean value logger > PME measurement systems > UT3 🔻

SYS L1 L2 L3

4 18.07.2023

140 k

120 ki

100 kV

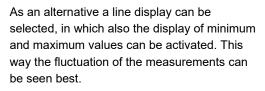
80.0 kl

60.0 kl

20.0 ki

0 kl

P mean [kW]


wer Reactive power Fundamental reactive power Apparent power cos(\u03c6) Power factor

Today 💽 📊 💽 🗠 🛛 min/max reset zoom

17.07.2023 18.07.2023

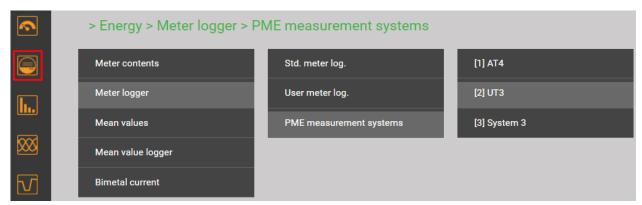
The mean-value to be displayed can be selected via the corresponding registers. Daily profiles are displayed, together with the values from the previous day.

The values for the individual averaging intervals can be read off with the help of a «fly-over» display.

This type of display also allows zooming into the time range of interest. The individual measured values are shown as points. Using the «fly-over» feature detailed data can be displayed:

- Time interval
- Mean value of the interval
- Minimum RMS value within the interval
- Maximum RMS value within the interval

Displaying the chronology of meter contents


The chronology of the meter readings is available via the menu Energy.

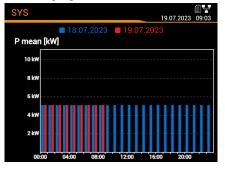
11:00 12:00

From the difference of two successive meter readings the energy consumption for the dedicated time range can be determined.

15:0

13:00 14:00

Selection of the meter logger of a PME measurement system


> En	ergy > Me	eter logger > PME measurement systems > UT3	3 ▼		
SYS					
Γ	Log. ΣP(I+IV) Log. ΣΡ(ΙΙ+ΙΙΙ) Log. ΣQ(Ι+ΙΙ) Log. ΣQ(ΙΙΙ+ΙV)			Ъ
	K <	1 2 > +5>> Results per page 25	<u> </u>		e
	#	time	Ρ ΣΤ (I+IV)		
	1	19.07.2023, 08:00:00,000	204415	Wh	
	2	19.07.2023, 07:00:00,000	199308	Wh	
	3	19.07.2023, 06:00:00,000	194202	Wh	
	4	19.07.2023, 05:00:00,000	189093	Wh	
	5	19.07.2023, 04:00:00,000	183981	Wh	
	6	19.07.2023, 03:00:00,000	178866	Wh	
	7	19.07.2023, 02:00:00,000	173753	Wh	
	8	19.07.2023, 01:00:00,000	168649	Wh	
	9	19.07.2023, 00:00:00,000	163541	Wh	
	10	18.07.2023, 23:00:00,000	158428	Wh	
	11	18.07.2023, 22:00:00,000	153310	Wh	
	12	18.07.2023, 21:00:00,000	148198	Wh	
	13	18.07.2023, 20:00:00,000	143090	Wh	

Meter content readings in table form

Displaying data locally

The selection works in principle in the same way as with the WEB-GUI. There are the following differences:

- The individual measured quantities are arranged in a display matrix and can be selected via navigation.
- The number of displayable meter readings is limited to 25
- The time range of the mean values is limited to the present day or the present week. There is no possibility for navigation. In addition, hourly mean-values will be shown, independently of the real averaging time.

Log. ΣP(I+IV) ((♣)) · · · · · · · · · · · · · · · · · ·					
time	Ρ ΣΤ (I+IV) [Wh]				
09:00:00,000 19.07.2023	209489				
08:00:00,000 19.07.2023	204415				
07:00:00,000 19.07.2023	199308				
06:00:00,000 19.07.2023	194202				
05:00:00,000 19.07.2023	189093				
04:00:00,000 19.07.2023	183981				
03.00.00 000 10 02 2023	179966				

Mean values for the present day

Meter readings

Manual data export of meter readings as CSV file

Via the time range of the data to export can be selected. A CSV (Comma separated value) file will be generated. For creation the <u>CSV settings</u> of the data exporter are applied. This can be imported as a text file to Excel.

The same file contains data for all meter quantities.

6.5 Measurement information in file format

Using the data export scheduler, measurement information may be provided also in file format. Such files can then:

- periodically or event-driven being sent to a SFTP server
- locally stored in the device and downloaded via webpage

The management and setup of tasks for providing files is done via the item *Data export* | *Data export* scheduler in the settings menu.

6.5.1 Predefined tasks

The data export scheduler contains up to two predefined tasks, for example for a PQ device for providing PQDIF files with power quality information.

				Add task
active	Name	Creation	File	Action
	Periodic PQDIF	daily (last 7 days)	[PQDIF] Everything in one file	• store on local Storage
	PQ Events	immediately	[PQDIF] events	• push to SFTP server

These tasks may be activated, deactivated and changed, but not deleted. Local storage and push to SFTP server are possible actions to be defined.

6.5.2 Creating periodic file data

In addition to the predefined tasks, new tasks can be setup for creating CSV files with mean-values information at regular intervals. These files may then be stored locally and / or pushed to a SFTP server. By selecting "Add task" new schedules can be set-up. An example is shown below:

Name	
PME data	
File	
CSV	✓ PME mean values ✓
Creation	
daily (last 24 hours)	▼
active	
Action	
- store on local Storage	~
- push to SFTP server	~
subfolder	PME_Data_62_187
Transmission window	none 🗸

The task "PME data" generates daily files with the mean-values of all PME measurement systems. A separate file is created for each measurement system.

The files will be both stored locally and pushed to the subfolder "PME_Data_62_187"of a SFTP server. The <u>settings</u> of the SFTP server to be used can be defined via Communication | SFTP in the Settings menu.

With the transmission window, a random transmission of the file(s) to the SFTP server within the selected time window could be provoked. The transmission window can be up to 6 hours. Here it is deactivated to force an immediate transfer.

The task list then shows three active tasks. Predefined tasks are marked gray to highlight that they can be deactivated but not removed. On the other hand, at any time the newly created task "PME_data" can be fully modified, deactivated or deleted.

				Add task
active	Name	Creation	File	Action
	Periodic PQDIF	daily (last 24 hours)	[PQDIF] Everything in one file	• store on local Storage
	PQ Events	immediately	[PQDIF] events	• push to SFTP server
	PME data	daily (last 24 hours)	[CSV] PME mean values	 store on local Storage push to SFTP server

Via the settings of the local display only the activation / deactivation of the tasks is supported.

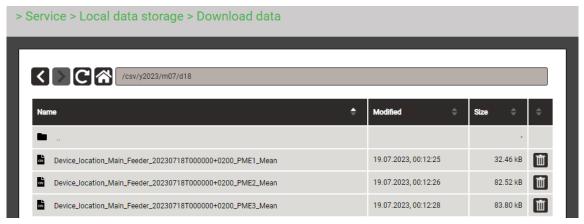
CSV settings

CSV files are intended for transmitting statistics of mean values. You may adjust the below parameters to adapt the file format and the content of the created files to your requirements.

Separator	Semicolon	~
Decimal separator	Dot	~
Time format	Local time +AB	~
include min/max values	Yes	~
Scaled to	Nominal values	~
Digits after decimal point	3	

- The **Separator** separates the individual entries on a text line for later display in table form.
- The **Decimal separator** defines how numbers or measured values are written to the file. The decimal separator must correspond to the country-specific number format of the operating system so that the CSV file can be opened directly in Excel without an import process. Common separators are periods (123.45) or commas (123.45).
- **Time format** defines the time format to be written. With the "local time + AB" time format, the double entries between 2 and 3 AM are supplemented with the letters A and B when switching back from daylight saving time.
- Include min/max values defines whether mean values with / without minimum and maximum values are written to the CSV file.
- Scaled to specifies whether the numerical value is based on the basic unit (e.g. 1087.65W) or on the units specified according to the nominal values (e.g. 1.0876kW), which are also used in the web interface.
- **Digits after decimal point** defines the number of digits after the decimal separator with which the numbers are written to the file.

6.5.3 Accessing file information via webpage


You can access files stored in the device using the service menu **Local data storage | Download data**. Depending on the tasks defined in the data export scheduler the available file structure may be different:

- csv: container for all CSV files to be stored locally
- pqdif: container for all PQDIF files (for LINAX PQ only) to be stored locally

The existing structure is displayed in a new tab.

> Service > Local data storage > Download data					
Name	÷	Modified			
CSV CSV					
pqdif					

The files of the PME measurement systems are stored in a hierarchical time structure (year, month, day) in the **csv** folder. By navigating to the date and selecting a file, it can be easily downloaded.

6.5.4 Periodical sending to a SFTP Server

If in the data export scheduler the sending to an SFTP server has been selected as action, the appropriate files will be sent periodically to the SFTP server defined in the settings of the communication. This is described in the device handbook of the base unit.

7. Service, maintenance and disposal

7.1 Batteries

The PME radio modules may contain batteries. These may be exchanged by the user, see chapter 5.1.1.

7.2 Disposal

The product and the radio modules must be disposed in compliance with local regulations. This particularly applies to the built-in batteries.

8. Technical data

Current module CTR75-1000A

Number of channels	3 or 4
Max. number of modules	2533 (≤100 currents per PME central unit)
Frequency range	10 Hz up to 100 kHz
Max. rated current I _N	1000 A ¹⁾
Max. measurable current	1,2 x I _N
Starting current	2A (fundamental component)
¹⁾ The measurement range will be auto	omatically set based on the rated value selected for the associated measurement system
Sampling rate	6 kHz
Polling interval	configurable 120s, default 1s
Transmission power	configurable -12…8dBm, default 0dBm
Range	10 m at transmission power 0 dBm
Power supply	
Sources	4 x batteries 1,5 V AA / FR6 /L91 or USB-C (5 V DC)
Batteries	Energizer Ultimate Lithium AA (not in scope of supply, available as accessories)
Battery life time	appr. 10 years, at transmission power 0 dBm
Basic uncertainty	
Current	±0,5 % (IEC 60688)
Active / reactive energy	Class 3.0 typical (IEC 62053)
Radio communication	
Frequency	2,4 GHz
Security	Advanced Encryption Standard AES-128
Number of PME systems	Up to 5 at the same location
Mechanical properties	
Conductor diameter	≤75mm
Sensor cable	Ø6mm
Safety	
The current inputs are galv	anically isolated from each other.
Protection	IP42 (junction box))
	IP67 (Rogowski coils)
Pollution degree	2
Measurement category	1000 V CATIII, 600 V CATIV
Ambient conditions, gene	eral information
Operating temperature	–10 up to <u>15 up to 30</u> up to +55 °C
Storage temperature	–25 up to +70 °C
Temperature influence	0.5 x measurement uncertainty (typical) per 10 K
Long term drift	0.5 x measurement uncertainty per year
Relative humidity	< 95% no condensation
Altitude	≤ 2000 m max.
Device to be used indoor o	

Annex

A Description of measured quantities of the PME measurement systems Used abbreviations

- 2LN 3-wire load in a split phase system (system with 2 phases and center tap), with neutral current measurement
- 3L 3-phase load, unbalanced load
- 4L 4-wire load, unbalanced load, without neutral current measurement
- 4LN 4-wire load, unbalanced load, with neutral current measurement

A1 Basic measurements

The acquisition of the currents by means of the radio modules is synchronized to the voltages of the base unit. This synchronous acquisition allows to calculate derived quantities such as power, load factor or meters.

	2LN	3L	4L	L
Measurement			-	4
Current I1				
Current I2				
Current I3		\checkmark	\checkmark	
Neutral current I _N				
Active power P				
Active power P1			\checkmark	
Active power P2				
Active power P3				
Total reactive power Q		\checkmark		
Total reactive power Q1			\checkmark	
Total reactive power Q2			\checkmark	
Total reactive power Q3			\checkmark	
Fundamental reactive power Q(H1)		\checkmark		
Fundamental reactive power Q1(H1)				
Fundamental reactive power Q2(H1)				
Fundamental reactive power Q3(H1)				
Apparent power S				
Apparent power S1			\checkmark	
Apparent power S2			\checkmark	
Apparent power S3			\checkmark	
Power factor PF				
Power factor PF1				
Power factor PF2				
Power factor PF3				
cosφ (H1)				
cosφ (H1) L1			\checkmark	\checkmark
cosφ (H1) L2				
cosφ (H1) L3				
Angle φ between U1 and I1		\checkmark		
Angle φ between U2 and I2				
Angle φ between U3 and I3				

A2 Harmonic analysis

Measurement	2LN	3L	4L	4LN
THD Current I1	\checkmark	\checkmark	\checkmark	
THD Current I2	\checkmark	\checkmark	\checkmark	
THD Current I3		\checkmark	\checkmark	
THD Current IN				
TDD Current I1		\checkmark	\checkmark	
TDD Current I2	\checkmark	\checkmark	\checkmark	
TDD Current I3		\checkmark	\checkmark	
TDD Current IN				

TDD (Total Demand Distortion)

The complete harmonic content of the currents is calculated as THD (Total Harmonic Distortion) and TDD (Total Demand Distortion). Whilst THD is scaled to the actual fundamental current, TDD is related to the nominal current and can estimate the influence of the current harmonics on the overall system better.

A3 Mean-values with fluctuation range

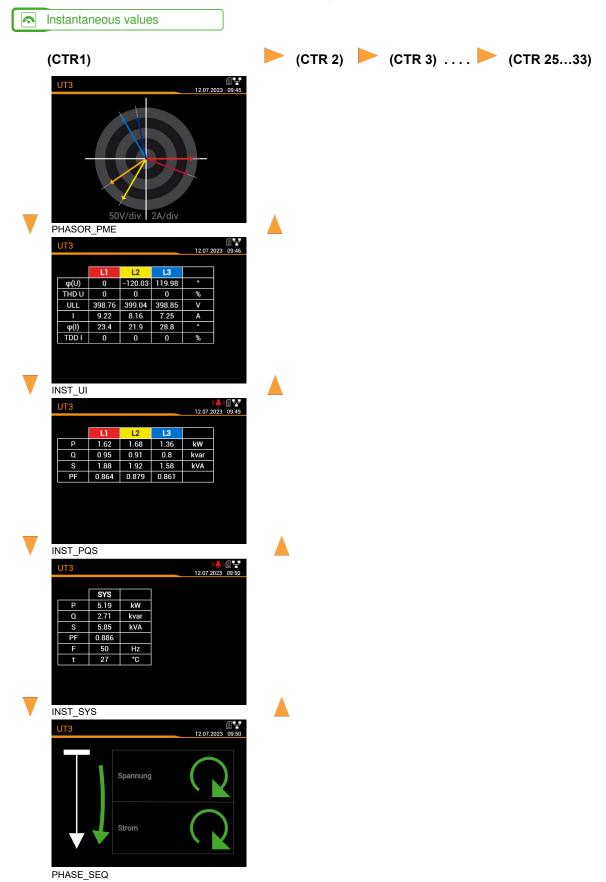
The interval time can be selected in the range from 1 minute to two hours. The internal clock is used to synchronize the averaging intervals.

The maximum and minimum RMS values are also determined for the interval

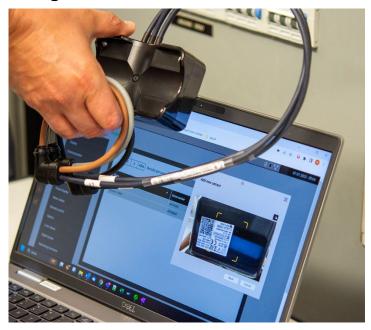
	D/	min	тах	2LN	3L	4L	z
Measurement	AVG	Е	Ë	2L	3	4	4LN
Current I1	٠	•	٠		\checkmark	\checkmark	
Current I2	٠	•	٠	\checkmark	\checkmark	\checkmark	
Current I3	•	•	٠		\checkmark	\checkmark	
Neutral current I _N	•	•	٠	\checkmark			
THD Current I1	٠	•	٠		\checkmark	\checkmark	
THD Current I2	٠	•	٠		\checkmark	\checkmark	
THD Current I3	٠	•	٠				
THD Current IN	٠	•	٠				
TDD Current I1	٠	•	٠		\checkmark	\checkmark	
TDD Current I2	•	٠	٠				
TDD Current I3	•	٠	٠				
TDD Current IN	٠	٠	٠				
Active power P	٠	•	٠		\checkmark	\checkmark	
Active power P1	٠	٠	٠				
Active power P2	•	•	٠			\checkmark	
Active power P3	٠	•	٠			\checkmark	
Total reactive power Q	٠	•	٠	\checkmark	\checkmark	\checkmark	
Total reactive power Q1	•	•	٠			\checkmark	
Total reactive power Q2	٠	•	٠			\checkmark	\checkmark
Total reactive power Q3	٠	•	٠			\checkmark	\checkmark
Fundamental reactive power Q(H1)	•	•	٠				\checkmark
Fundamental reactive power Q1(H1)	٠	•	٠			\checkmark	\checkmark
Fundamental reactive power Q2(H1)	٠	•	٠			\checkmark	\checkmark
Fundamental reactive power Q3(H1)	٠	•	٠			\checkmark	\checkmark
Apparent power S	•	•	٠		\checkmark	\checkmark	
Apparent power S1	٠	•	٠			\checkmark	\checkmark
Apparent power S2	•	•	٠	\checkmark		\checkmark	
Apparent power S3	•	•	٠			\checkmark	
Power factor PF	٠	•	٠		\checkmark	\checkmark	
Power factor PF1	٠	•	٠			\checkmark	
Power factor PF2	٠	٠	٠	\checkmark		\checkmark	
Power factor PF3	٠	٠	٠				
cosφ (H1)	٠	٠	٠			\checkmark	
cosφ (H1) L1	٠	٠	٠	\checkmark		\checkmark	
cosφ (H1) L2	٠	٠	٠	\checkmark		\checkmark	
cosφ (H1) L3	٠	٠	٠				

A4 Meters

The subsequent energy meter contents are provided for each PME measurement system.


Measured quantity	
Active energy I+IV	τφ
Active energy II+III	P
Reactive energy I+II	
Reactive energy III+IV	

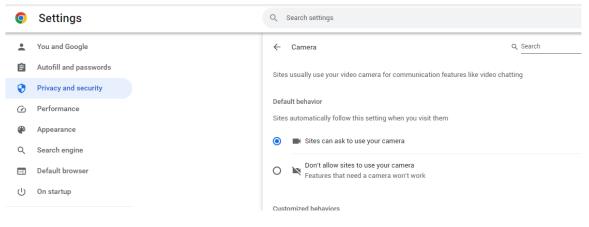
Programmable meter resolution


For all meters the resolution (displayed unit) can be selected almost freely. This way, applications with short measurement times, e.g. energy consumption of a working day or shift, can be realized. The smaller the basic unit is selected, the faster the meter overflow is reached.

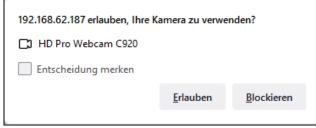
Meter scaling can be set for each PME measurement system individually.

B Display matrix PME measurement systems

C Using a camera

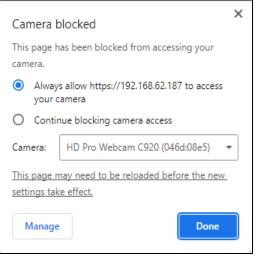

In order to be able to use the camera to scan the QR code on a website, the following points must be observed:

- The website must use secure HTTPS communication. Note: Enabling web security using HTTPS is described in the device manual for the basic device.
 OR
- Alternatively, the (insecure) website of the device can be defined as a secure source


Schrome chrome://flags/#unsafely-treat-insecure-origin-as-secure	
Q Search flags	Reset all
Insecure origins treated as secure	
Treat given (insecure) origins as secure origins. Multiple origins can be supplied as a comma-separated list. Origins must have their protocol specified e.g. "http://example.com". For the definition of secure contexts, see https://w3c.github.io/webappsec-secure-contexts/ – Mac, Windows, Linux, ChromeOS, Android, Fuchsia, Lacros	Enabled 🗸
192.168.62.187	
#unsafely-treat-insecure-origin-as-secure	-

Flag settings in Chrome browser

• The use of the camera by websites must be activated in the browser settings in the privacy and security section



• Depending on the browser, a permission may be required before activating the camera.

Browser: Firefox

• Permission to use the camera via a website can be revoked at any time. If several cameras are connected, the camera to be used can be selected

Browser: Chrome

D Radio compliance statement

This device complies with part 15 of the **FCC** rules and **Industry Canada** license-exempt RSS Standard(s). Operation is subject to the following two conditions.

- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Le présent appareil est conforme à la partie 15 des règles de la **FCC** et aux CNR d'**Industrie Canada** applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) l'appareil ne doit pas produire de brouillage
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si lebrouillage est susceptible d'en compromettre le fonctionnement."

Camille Bauer Metrawatt AG is not responsible for any radio television interference caused by unauthorized modifications of this equipment or the substitution or attachment of connecting cables and equipment other than those specified by Camille Bauer Metrawatt AG. The correction of interference caused by such unauthorized modification, substitution or attachment will be the responsibility of the user

INDEX

C	М	
Camera usage28	Measurements	23
Commissioning9	Basic quantities	23
Configuration	Harmonic analysis	24
Menu16	Mean-values	25
cosφ23, 25	Meters	26
D	Meter resolution	26
Device overview5	0	
E	Operating elements	15
Electrical connections	R	
Rogowski radio modules7	Radio compliance	30
F	S	
FCC	Safety notes	5
	scope of supply	4
	Service and maintenance	21
IC	Т	
Installation check13	₩ <u></u>	
L	Technical data	22
Linking radio modules9		